

=

CONTENTS
Contents.. 1
Introduction.. 2

Description .. 2

M5Core ... 3

Hardware and Sensor .. 4

Accessories .. 5

ARDUINO IDE... 6
Environment Setup... 6

API.. 17
LCD.. 17
Button... 20
Speaker.. 22

Module... 24
Relay.. 24
... 25
Microphone... 27
Light Sensor... 29
Joystick... 31
Step Motor... 34
DC-Motor... 39
Servo.. 42
Keyboard... 45
Encoder.. 48
SHT30 Temperature and humidity detection....................... 51
BMP280 Air pressure detection.................................. 54
LED MATRIX... 57
RFID... 60
DAC.. 63
ADC.. 66
RS-232... 72

appendix... 73

Example Github .. 74

Arduino API ... 75

Document & Datasheet .. 75

INTRODUCTION
Description

DemoBoard is a multi-functional IoT learning development board.

It uses BASIC in the M5Stack controller series as the control core,

built-in ESP32 main control chip, and is fully compatible with the

M5Stack module stacking and hardware expansion system.

Equipped with a wealth of peripheral modules, including

environmental detection related sensors, rocker control, rotary

encoder, matrix buttons, radio frequency identification, mechanical

motion control (including three-motor drive methods), three-color LED

light board, relay Control, integrate multiple groups of ADC and DAC

conversion circuits, and support RS485 and RS232 bus communication.

Each module has an independent power switch. Combining the M5 main

control with its Internet of Things properties as the control core,

the DemoBoard development board covering "sound, light, electricity,

force" and other aspects will be your learning hardware, A great tool

for programming.

M5Core

The front of the BASIC controller is a 2-inch color TFT LCD

screen with a resolution of 320x240. Built-in IoT chip ESP32,

integrated Bluetooth, and WiFi modules in one. ESP32 is equipped with

a dual-core 32-bit MCU with a main frequency of up to 240 MHz and a

computing capacity of up to 650 DMIPS. The chip has abundant pin

resources and integrates a wealth of hardware peripherals, including

capacitive touch sensors, Hall sensors, low-noise sensor amplifiers,

SD card interfaces, Ethernet interfaces, high-speed SDIO/SPI, UART,

I2S, and I2C, etc.

Hardware and Sensor

1 - Use M5Core as the control core, compatible with Module stacking

and Unit expansion system.

2 - Protoboard, M5-BUS bus expansion

3 - Environmental sensor series (temperature, humidity, pressure,

light, microphone)

4 - 8 relay outputs

5 - Joystick input

6 - Rotary encoder

7 - 8x8 matrix RGB LED

8 - 10KG Serve

9 - RS-458，RS232 Communication function

10 - 4 channel DAC, 4 channel ADC

11 - 4x4 button matrix

12 - DC motor (with feedback)

13 - Four-phase five-wire stepping motor

14- Radio Frequency Identification Reader (RFID)

Accessories

The development board provides a series of supporting hardware, which

can help users test the functions of each module on the board.

1x 12V power adapter (before using the development board, please

connect the 12V power adapter to power the development board)

1x RS232 connection line (used as RS232 port connection)

1x RFID CARD (used to test radio frequency modules)

1x ID CARD (used to test radio frequency modules)

16x Bread wire (used for onboard jumpers to connect the interfaces of

various hardware modules)

ARDUINO IDE
Environment Setup

Software Install

The development environment used in this tutorial is the Arduino IDE.

This chapter will show you how to download related software, resource

libraries, and some basic configurations

Arduino IDE is open-source software, with cross-platform

capabilities, it can run on Windows, Mac OS X, and Linux. (The

software installation operation demonstrated in this tutorial is

based on the Windows 10 operating system)

First visit (https://www.arduino.cc/en/Main/Software), enter the

download page and select the installation package corresponding to

your operating system to download.

Windows 10 users can click the "Windows Installer, for Windows XP and

up" option, and the page will switch to the donation and download

page. If you need to donate, you can click "CONTRIBUTE & DOWNLOAD",

and only download the installation package file and click "JUST

DOWNLOAD".

After the download is complete, double-click to open the

installation package. According to the installation prompt, choose to

agree to the authorization agreement. For the configuration options

and installation path of the installation, you can follow the default

configuration if there is no special requirement. Click Next

according to the prompts until the installation is complete.

According to the default configuration, after the installation is

complete, an Arduino shortcut icon will be created on the desktop.

Double-click it to start the Arduino IDE.

Basic Introduction

At the top of the program are the tabs and the function menu bar,

which provide a series of operation and configuration options,

including compile, upload, new, open, save, and serial monitor

functions.

Located in the middle is the programming area for code editing.

Below the programming area is the log output area. When enabled, it

will show you the current working status of the Arduino IDE, such as

compiling or uploading the program and output the log information

during the compilation and upload process, which is convenient for

program debugging and Troubleshooting.

Install CP2104 driver

The main controller used by DemoBoard is BASIC. Before use, we

need to install the matching USB driver (CP2014),

Visit the Arduino environment configuration tutorial page in the

official documentation of M5Stack.

(https://docs.m5stack.com/#/en/arduino/arduino_development)

Select the "Install USB Driver" option in the catalog, jump to

the bottom of the page, and select the CP210X driver compressed

package of the corresponding operating system to download.

Unzip the downloaded compressed package, open the corresponding

installation program (64-bit operating system selection _x64, 32-bit

operating system selection _x86) according to the number of operating

systems, and click Next in turn according to the prompts until the

installation is complete.

After completing the installation, use the Type-C data cable to

connect the M5Stack device to the personal computer. Select the

"Device" option from the Windows settings page to view the

information of the currently connected device. As shown in Figure 2-

11, the current M5Stack device has been successfully connected, and

the currently used port is COM10. It means that the USB CP210X driver

has been installed successfully and the device is operating normally.

ESP32 Board

In addition to supporting Arduino's official development boards

(such as Arduino Uno), Arduino IDE supports many controller chips on

the market. When developing different devices, we need to specify the

current development board information in the configuration options,

This section will show you how to configure the ESP32 board

management information used by M5Stack in the Arduino IDE. Click the

"File" tab at the top of the Arduino IDE page and open the

"Preferences" setting.

Click the Add button on the right side of the "Add Board

Management Address" column, enter the URL address below in the pop-up

window, and click OK to save.

https://dl.espressif.com/dl/package_esp32_index.json

Also, in the "Preferences" setting page, you can set some display

parameters, such as the editor text size, adding line number display,

compiling/burning log prompts, and other auxiliary content.

After saving the settings, select the "Tools" tab, point the mouse to

the "Development Board" option, find the "Development Board Manager"

in its sub-directory, and click Open.

In the pop-up board management window, search for "esp32" and the

content of the "esp32 by Espressif Systems" development board will

appear.

Click the version number option to switch to install different

versions. For better support, it is recommended to download the

latest version.

After the installation is complete, close the board manager and go

back to the -->"Tools"-->"Development Board" option. Below the

directory, you will find "M5Stack-Core-ESP32" and other M5Stack,

ESP32 related board resources Options.

Select "M5Stack-Core-ESP32", connect the device to set the port and

other parameters. The "Upload Speed" parameter can set the

communication speed (bps) at which the Arduino IDE transmits

executable files to the device when uploading programs. In the code

debugging stage, it is often necessary to repeatedly burn the

program. To speed up the development progress, you can choose a

higher speed to reduce the burning time.

M5Stack Library

M5Stack officially provides an Arduino program library adapted to

M5Stack devices. The program library encapsulates and integrates a

series of M5Stack device hardware (such as sensors, LCD screens,

etc.) function support and drivers. Through this library, users can

develop M5Stack devices very conveniently and quickly. Select the

"Tools" tab, open the "Manage Library" option, and click to open the

Library Manager.

Search for "M5Stack" in the library manager, and you will find a

series of libraries related to M5Stack. Here we choose the library

maintained by the official and with the "by m5stack" field. Select

the latest version and install it.

After completing the above steps, the development environment of

M5Stack & Arduino IDE has been set up.

Hello World

At the top of the program are tabs and function menu bars, which

provide a series of operation and configuration options, and in the

middle is the programming area for code editing.

Below the programming area is the log output area. When enabled, it

will show you the current working status of the Arduino IDE, such as

compiling or uploading the program and output the log information

during the compilation and upload process, which is convenient for

program debugging and Troubleshooting.

In addition to providing a series of functions, the M5Stack program

also provides many programming cases for users' reference.

After completing the deployment of the development environment, we

can try to run a simple case program to familiarize ourselves with

the use of software and hardware.

Click the "File" tab at the top of the Arduino IDE page-->"Example

Program"-->"M5Stack"-->"Basics"-->"HelloWorld" to open the example

program.

Connect the M5Stack device to the computer through the Type-C data

cable, select the corresponding port in the "Port" option in the

"Tools" tab, and confirm that the development board and other

configuration information are correct.

Click the "Upload" button on the function menu bar, and the program

will automatically start to compile. After the compilation is passed,

the program will be uploaded automatically, and the log will output

the percentage of the progress of the program upload at this time. At

this time, please keep the computer and the M5Stack device connected

until the program upload is completed. When the status bar prompts

"Done uploading.", it means the program has been uploaded.

Check the M5Stack device at this time, and you will find that the

upper left corner of the LCD screen displays the words "Hello World".

The screen is as expected by our program, and it is successfully

displayed.

API
LCD

Description

When learning environment configuration, we ran the "HelloWorld" case

program and successfully displayed text on the LCD. This color LCD

screen can do much more than that.

The M5Stack library provides a series of commonly used program APIs

for LCD drivers. Next, we will learn how to use these APIs to freely

print content and draw patterns on the LCD screen of the M5Stack

device.

This "320x240" pixel color LCD screen. In actual use, you can think

of the screen as a plane coordinate system, with the horizontal axis

is the x-axis and the vertical axis is the y-axis. Starting from the

origin of coordinates (0,0) in the upper left corner to the diagonal

(319.239) in the lower right corner, a rectangle formed by the

diagonal is the display area of the screen. When the coordinates of

the content leave this range, it will not be displayed normally.

Text display

In the program, we can not only modify the displayed text content but

also set the display position of the content and the font size. By

setting the text cursor, you can specify the position of a character

in the text content. By setting the font-size value, the size of the

font display can be adjusted.

Set cursor position：

void M5.lcd.setCursor(uint16_t x, uint16_t y);

Description: Set the text cursor to the coordinates (x,y)

parameter：

 uint16_t x：x-axis coordinate
 uint16_t y：y-axis coordinate

return: none
eg：M5.lcd.setCursor(40, 60);

Set font size：

void M5.lcd.setTextSize(uint8_t size);

Description：Set font size

parameter：

 uint8_t size：Font size (allowable input range 1~7)

return: none
eg：M5.lcd.setTextSize(3);

Print Text：

int M5.lcd.print(val);

int M5.lcd.print(val,format);

int M5.lcd.println(val);

int M5.lcd.println(val,format);

Description：Print the specified information on the LCD
screen。

parameter：

 val：The output value can be integers, floating-point
numbers, characters, and strings.

format: Specify the output format, BIN (binary), OCT
(octal), DEC (decimal), HEX (hexadecimal). When outputting
floating-point numbers, you can specify the number of digits
left after the decimal point.

return: The number of bytes occupied by the content

eg：

M5.lcd.print(78);// Print result 78

M5.lcd.print(1.23456); Print result is 1.23 (by default, two
decimal places are reserved)

M5.lcd.print("M");// Print M

M5.lcd.print("Hello M5Stack"); Print Hello M5Stack

M5.lcd.print(78,HEX);// Print 4E

M5.lcd.print(1.23456,4); //Print 1.2346

Example

Control LCD to display text dynamically, and display "Hello

World" and "Hello M5Stack" at intervals

#include <M5Stack.h>

void setup(){

 M5.begin();
 M5.Lcd.setTextSize(3);
}

void loop() {
 M5.Lcd.setCursor(40, 60);
 M5.Lcd.print("Hello World");
 delay(1000);
 M5.Lcd.clear(BLACK);
 M5.lcd.setCursor(40, 100);
 M5.Lcd.print("Hello M5Stack");
 delay(1000);
 M5.Lcd.clear(BLACK);
}

Button

Description

Three programmable physical buttons are provided on the control

panel. With the existing API, interactive operations such as short

press and long press can be realized.

Button click：

uint8_t M5.BtnA.wasPressed();

Description: When the button is pressed, the function returns
the value "1" once, and then set to "0". When the button is
released, the function return value is always "0".

parameter：none

return:none

eg：

if (M5.BtnA.wasPressed()) {
 M5.Lcd.printf("Button A was pressed.");
 delay(1000);
}

Long press：

uint8_t M5.BtnA.pressedFor(int32_t ms);

Description: Specify the duration of pressing the button.
Actually, when the pressing duration is greater than the set
duration, it returns "1", otherwise it returns "0".

parameter：
 int32_t ms: Set long press time

return:none

eg：

if (M5.BtnA.pressedFor(2000)) {
 M5.Lcd.printf("Button A was pressed for more than 2 second
s.");
 delay(1000);
}

Status update：

void M5.update();

Description: Update the status of buttons A, B, C, Yang, and
speakers. Note: When using a key program, you need to add
"M5.update();" to the cycle of the program, so that the key
value is constantly refreshed as the program runs, otherwise
the program key is only valid once.
parameter：none

return:none

eg：

M5.update();

Speaker

Description

The speaker integrated on the controller emits various tones for

audio playback or function prompts.

Play the specified tone：

void M5.Speaker.tone(uint16_t freq, uint32_t duration);

Description：Play audio at a specified frequency and support
setting the playing time.
parameter：
 uint16_t freq: Set the frequency of playing
sound uint32_t duration:
return:none

eg：

M5.Speaker.tone(440, 1000);

Note: The hearing range of ordinary people is 20Hz~20KHz. Sounds

larger or smaller than this range may not be recognized by people.

Excessive use of high frequency or long-term high-frequency playback

is likely to cause damage to the speaker hardware. Therefore, please

pay attention to the appropriate range when filling in the

parameters.

Example

combines the key function to control the speaker to emit different

sounds.

#include <M5Stack.h>

void setup() {

 M5.begin();
M5.Lcd.setTextSize(3);
M5.lcd.setCursor(40, 100);

 M5.Lcd.print("M5Stack Speaker test");

}

void loop() {
 if(M5.BtnA.wasPressed()) {
 M5.Speaker.tone(262, 1000);
 }
 if(M5.BtnB.wasPressed())
 {
 M5.Speaker.tone(294, 1000);
 }
 if(M5.BtnB.wasPressed())
 {
 M5.Speaker.tone(330, 1000);
 }
 M5.update();
}

Warnning:

When using M5Core for programming and development, you need to pay

attention to the pin occupancy of the built-in hardware and avoid

using the same pin to drive different hardware, resulting in failure

to work properly. The following pins represent their application in

M5Core, (For example, GPIO32 is the pin occupied by the LCD screen)

more complete pin mapping information, please visit

https://docs.m5stack.com/#/en/core/basic

MODULE
Relay

Description

Relay is a relay control module. When the coil inside the relay

is energized, it will generate a magnetic force to absorb the switch

action, and then realize the switch control. Such a small current

control high current electrical circuit scheme can control DC/3A-30V

or AC/3A -220V level line is on and off.

Each relay provides three control circuit pins, which are the

common terminal COM, the normally closed terminal NC, and the

normally open terminal NO. By default, NC and COM are connected, and

NO and COM are disconnected by default. When the relay coil is

energized, The switch relationship between the two and the common

terminal COM will be reversed.

Hardware connection

When using the Relay relay control module, you only need to connect

the control pin of the controller to the relay coil and turn on the

independent power switch of the module to power it. In this way, when

the controller pin outputs a high level, the relay coil will be

energized and generated The magnetic field force absorbs the action

switch and makes the corresponding action.

Example

#include <M5Stack.h>

const int In_0 = 23;
void setup() {
 // put your setup code here, to run once:
 pinMode(In_0,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(In_0, LOW);

 delay(1000);

 digitalWrite(In_0, HIGH);

 delay(1000);
}

Microphone

Description

The Microphone module integrates the MAX4466 microphone

preamplifier, which can effectively collect the analog and digital

information input through the microphone. It also provides an

adjustable resistor for the user to adjust the threshold value of

identification.

Hardware connection

The Microphone module supports the reading of two signal values,

digital and analog. It should be noted that not all GPIO interfaces

of M5Core support AD conversion when making hardware connections.

Therefore, the interface needs to be connected when using the analog

reading function. Connect to pins that support ADC (such as

34/35/36), and use general GPIO for digital reading.

Example

#include <M5Stack.h>

const int Analog = 36;
const int Digtal = 2;
void setup() {
 // put your setup code here, to run once:
 M5.begin();
 pinMode(Digtal, INPUT_PULLUP);
 dacWrite(25, 0);
 M5.Lcd.setCursor(100, 0, 4);
 M5.Lcd.print("MICROPHONE");

}
uint16_t a_data;
uint16_t d_data;
void loop() {
 // put your main code here, to run repeatedly:
 a_data = analogRead(Analog);
 d_data = digitalRead(Digtal);
 Serial.printf("Analog:%0d Digtal:%0d\n", a_data, d_data);

 M5.Lcd.setCursor(30, 120, 4);
 M5.Lcd.printf("Analog:%0d Digtal:%0d\n", a_data, d_data);
 delay(200);

}

Light Sensor

Description

Light Sensor is a light sensor with an integrated photoresistor,

LM393DR2G voltage comparator, which can effectively collect light

input analog and digital information. It also provides adjustment

resistance for users to adjust the threshold value of recognition.

Hardware connection

The Light module supports the reading of both digital and analog

signal values. When making hardware connections, it should be noted

that not all GPIO interfaces of M5Core support AD conversion, so when

using the analog reading function, you need to connect the interface

Connect to pins that support ADC (such as 34/35/36) and use general

GPIO for digital reading.

Example

#include <M5Stack.h>

const int Analog = 36;
const int Digtal = 2;
void setup() {
 // put your setup code here, to run once:
 M5.begin();
 pinMode(Digtal, INPUT_PULLUP);
 dacWrite(25, 0);

 M5.Lcd.setCursor(100, 0, 4);
 M5.Lcd.print("LUMINOSITY");

}
uint16_t a_data;
uint16_t d_data;

void loop() {
 // put your main code here, to run repeatedly:
 a_data = analogRead(Analog);
 d_data = digitalRead(Digtal);

 Serial.printf("Analog:%0d Digtal:%0d\n", a_data, d_data);

 M5.Lcd.setCursor(30, 120, 4);
 M5.Lcd.printf("Analog:%0d Digtal:%0d\n", a_data, d_data);

 delay(200);

}

Joystick

Description

The joystick is a joystick input module. The module has built-in two

sets of sliding rheostats and a key switch. When the joystick is

operated, its internal resistance changes accordingly. Connect the

X_ADC and Y_ADC interfaces of the module to the M5Core support On the

ADC converted pin, read the digital information of the joystick

offset through the program.

When the BUTTON is pressed down on the joystick, its internal key

switch will act accordingly to change the output signal to a low

level.

Hardware connection

Connect the X_ADC and Y_ADC of the Joystick module to the pins

that support the ADC function on the M5Core (in this example, PIN

35/36 will be used), and connect the BUTTON to PIN 2.

Example

#include <M5Stack.h>

/*
 note:Reading the adc value requires writing the pin 25 of th
e adc to 0.
 dacWrite(25, 0);
*/

void setup() {
 // put your setup code here, to run once:
 M5.begin();
 pinMode(2, INPUT_PULLUP);
 dacWrite(25, 0);

 M5.Lcd.setCursor(100, 0, 4);
 M5.Lcd.print("JOYSTICK");
}

uint16_t x_data;
uint16_t y_data;
uint8_t button_data;
void loop() {
 // put your main code here, to run repeatedly:
 x_data = analogRead(35);
 y_data = analogRead(36);

 button_data = digitalRead(2);

 Serial.printf("x:%0d y:%0d button:%d\n", x_data, y_data, but
ton_data);

 M5.Lcd.setCursor(30, 120, 4);
 M5.Lcd.printf("x:%04d y:%04d button:%d\n", x_data, y_data, b
utton_data);

 delay(200);
}

Step Motor

Description

Step Motor is a stepping motor module with integrated motor drive

chip LV8548MC, using a five-wire four-phase connection. The A, B, C,

D interfaces on the board can control the four magnetic pole coils in

the stepping motor through the drive chip The power is turned on and

off to control the rotation of the motor.

Hardware connection

Connect the control pins PIN 2, 5, 12, and 13 to the A, B, C, and D

ports of the stepper motor module, and turn on the independent power

supply

Different coil energization sequence will affect the rotation speed

of the stepper motor, the number of beats for a complete revolution,

the step value, and the stability during operation.

Example-1

Coil Step1 Step2 Step3 Step4

MotorA High

MotorB High

MotorC High

MotorD High

#include <M5Stack.h>

const int MOTOR_A_A = 2;
const int MOTOR_A_B = 5;
const int MOTOR_A_C = 12;
const int MOTOR_A_D = 13;
void setup() {
 M5.begin();
 pinMode(MOTOR_A_A, OUTPUT);
 pinMode(MOTOR_A_B, OUTPUT);
 pinMode(MOTOR_A_C, OUTPUT);
 pinMode(MOTOR_A_D, OUTPUT);
}

void loop() {
 digitalWrite(MOTOR_A_A, HIGH);
 digitalWrite(MOTOR_A_B, HIGH);
 digitalWrite(MOTOR_A_C, LOW);
 digitalWrite(MOTOR_A_D, LOW);
 delay(2);
 digitalWrite(MOTOR_A_A, LOW);
 digitalWrite(MOTOR_A_B, HIGH);
 digitalWrite(MOTOR_A_C, HIGH);
 digitalWrite(MOTOR_A_D, LOW);
 delay(2);
 digitalWrite(MOTOR_A_A, LOW);
 digitalWrite(MOTOR_A_B, LOW);
 digitalWrite(MOTOR_A_C, HIGH);
 digitalWrite(MOTOR_A_D, HIGH);
 delay(2);
 digitalWrite(MOTOR_A_A, HIGH);
 digitalWrite(MOTOR_A_B, LOW);
 digitalWrite(MOTOR_A_C, LOW);
 digitalWrite(MOTOR_A_D, HIGH);
 delay(2);
}

Example-2

Coil Step1 Step2 Step3 Step4

MotorA High High

MotorB High High

MotorC High High

MotorD High High

#include <M5Stack.h>

const int MotorA = 2;
const int MotorB = 5;
const int MotorC = 12;
const int MotorD = 13;

const int pinMotor[4] = {MotorA,MotorB,MotorC,MotorD};

const int logic[4][4] = {
 {1,1,0,0},
 {0,1,1,0},
 {0,0,1,1},
 {1,0,0,1}
};

int count;

void setup() {
 M5.begin();
 pinMode(pinMotor[0], OUTPUT);
 pinMode(pinMotor[1], OUTPUT);
 pinMode(pinMotor[2], OUTPUT);
 pinMode(pinMotor[3], OUTPUT);
}

void loop() {
 for (int i = 0; i < 2048 ; i++) {
 driveMotor();
 delay(2);
 }
}

void driveMotor() {
 count++;
 int step = count % 4;
 digitalWrite(pinMotor[0] , logic[step][0]);
 digitalWrite(pinMotor[1] , logic[step][1]);
 digitalWrite(pinMotor[2] , logic[step][2]);
 digitalWrite(pinMotor[3] , logic[step][3]);
}

Example-3

Coil Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

MotorA High High High

MotorB High High High

MotorC High High High

MotorD High High High

We can further subdivide the step, only need to modify the array of

power-on logic, and the drive function.

const int logic[8][4] = {
 {1,1,0,0},
 {0,1,0,0},
 {0,1,1,0},
 {0,0,1,0},
 {0,0,1,1},
 {0,0,0,1},
 {1,0,0,1},
 {1,0,0,0}
};

void driveMotor() {
 count++;
 int step = count % 8;
 digitalWrite(pinMotor[0] , logic[step][0]);
 digitalWrite(pinMotor[1] , logic[step][1]);
 digitalWrite(pinMotor[2] , logic[step][2]);
 digitalWrite(pinMotor[3] , logic[step][3]);
}

DC-Motor

Description

DC-Motor is a DC motor module with feedback. The module has a built-

in LV8548MC motor driver chip. It provides M+ and M- two interfaces

for controlling forward and reverse rotation. When M+ is high and M-

is low, The motor rotates forward. When M+ is low level and M- is

high level, the motor is reversed. When M+ and M- are both low and

low, the motor brakes.

Hardware connection

Connect the control pins PIN 21, 22 to the M+ and M- ports of the DC

motor module respectively, and turn on the independent power supply.

Example

#include <M5Stack.h>

void setup() {

 M5.begin(true, false, true);
 M5.Lcd.clear(BLACK);
 M5.Lcd.setTextColor(YELLOW);
 M5.Lcd.setTextSize(2);
 M5.Lcd.setCursor(65, 10);
 M5.Lcd.println("DC motor example");
 M5.Lcd.setCursor(30, 220);
 M5.Lcd.println("Forward");
 M5.Lcd.setCursor(140, 220);
 M5.Lcd.println("stop");
 M5.Lcd.setCursor(220, 220);
 M5.Lcd.println("Reverse");

 pinMode(21, OUTPUT);

 pinMode(22, OUTPUT);
}

void loop() {
 M5.update();

 if (M5.BtnA.wasReleased()) {
 M5.Lcd.print('A');
 digitalWrite(22, LOW);
 digitalWrite(21, HIGH);
 } else if (M5.BtnB.wasReleased()) {
 M5.Lcd.print('B');
 digitalWrite(21, LOW);
 digitalWrite(22, LOW);
 } else if (M5.BtnC.wasReleased()) {
 M5.Lcd.print('C');
 digitalWrite(21, LOW);
 digitalWrite(22, HIGH);
 }
}

Servo

Description

The development board is equipped with a steering gear (0~180°) with

a torque of up to 10KG. The default 5V power supply is used for

control by a single-signal bus. The driving signal is 50Hz, which is

controlled to rotate to different angles according to the PWM duty

cycle. PWM waveform is medium and high The level time is

(0.5us~2.5us) respectively to control the rotation of the steering

gear (0~180°)

Hardware connection

Connect the control pin PIN 15 to the SIGNAL interface of the servo

and turn on the independent power supply,

Example

#include <M5Stack.h>
#include "driver/ledc.h"

const int servo_pin = 15;
int freq = 50;
int ledChannel = 0;
int resolution = 8;

void setup() {

 M5.begin();
 M5.Lcd.setCursor(120, 110, 4);
 M5.Lcd.println("SERVO");
 ledcSetup(ledChannel, freq, resolution);
 ledcAttachPin(servo_pin, ledChannel);
}

void loop() {
 ledcWrite(ledChannel, 6);//0°
 delay(1000);
 ledcWrite(ledChannel, 18);//90°
 delay(1000);
 ledcWrite(ledChannel, 30);//180°
 delay(1000);

}

Keyboard

Description

A 4 x 4 matrix key module is provided on the development board. The

specific key pressed can be detected by program scanning, which can

provide you with richer key-value input and diversified control

functions.

Hardware connection

Connect the control pins to each pin of the row and column of the

button matrix, so that the program can scan the action of the button.

Example

In this case, the library <Keypad.h> is used, you can search and

install it in the library management of Arduino.

#include<M5Stack.h>

#include <Keypad.h>
/***
 * note:You should first install the keyboard library.
 * https://github.com/Chris--A/Keypad
 ***/
const byte ROWS = 4; //four rows
const byte COLS = 4; //three columns
byte rowPins[ROWS] = {17,16,21,22};
byte colPins[COLS] = {5, 26, 13, 15};

char keys[ROWS][COLS] = {
 {'a','b','c','d'},
 {'e','f','g','h'},
 {'i','j','k','l'},
 {'m','n','o','p'}
};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROW
S, COLS);

void setup() {
 // put your setup code here, to run once:
 M5.begin();

 M5.Lcd.setCursor(100, 0, 4);
 M5.Lcd.println("KEYBOARD");
}

void loop() {
 //put your main code here, to run repeatedly:
 char key = keypad.getKey();
 if(key){
 Serial.println(key);
 M5.Lcd.fillRect(150, 150, 80, 50, BLACK);
 M5.Lcd.setCursor(150, 140, 4);
 M5.Lcd.printf("%c",'A');
 }
}

Encoder

Description

When the knob is rotated, port A and port B will generate a

correspondingly high level according to the selected rotation

direction. When the knob is pressed, its internal key switch will act

accordingly to change the output signal to a low level.

Hardware connection

Connect the control spindle to an ordinary GPIO, and re-insert the

replacement change in the program to determine the action of the

knob.

Example

#include <M5Stack.h>

const int phaseA = 2;
const int phaseB = 13;
const int Button = 15;

#define GET_CODE() uint8_t(digitalRead(phaseA) << 4 | digitalR
ead(phaseB))

int32_t count = 65536;
int32_t count_last = 65536;
int32_t count_change = 0;
uint8_t code = 0;
uint8_t code_old = 0;

void encoderEvent() {
 code = GET_CODE();
 if(code != code_old) {
 if(code == 0x00) {
 count_last = count;
 if(code_old == 0x10) {
 count--;

 count_change == -65536 ? count_change : count_change-
-;
 } else {
 count_change == 65536 ? count_change : count_change++;
 }
 }
 code_old = code;
 }
}

void setup() {
 // put your setup code here, to run once:
 M5.begin();
 pinMode(phaseA, INPUT_PULLUP);
 pinMode(phaseB, INPUT_PULLUP);
 pinMode(Button, INPUT_PULLUP);
 dacWrite(25, 0);

 M5.Lcd.setCursor(100, 0, 4);
 M5.Lcd.print("ENCODER");

 code = GET_CODE();
 code_old = code;

}

void loop() {
 // put your main code here, to run repeatedly:
 uint8_t value = digitalRead(Button);
 encoderEvent();
 Serial.printf("code = %d,button = %d\r\n ",count_change,valu
e);

 M5.Lcd.setCursor(30, 120, 4);
 M5.Lcd.printf("code = %05d,button = %d\r\n ",count_change,va
lue);
 delay(1);

}

SHT30 Temperature and humidity

detection

Description

The SHT30 temperature and humidity sensor located in the sensor

module group can collect temperature and humidity data in the

environment, and transmit data through the I2C protocol. The I2C

address is (0x44)

Hardware connection

Sensor devices that use I2C protocol for communication can be

connected to M5Core's default I2C protocol pins PIN21 (SDA), PIN22

(SCL) when in use

Example

The following code is only the main program and does not include its

dependent library files such as <SHT3X.h>. For the complete code,

please visit the Github address below to get it.

https://github.com/m5stack/DEMO-BOARD/tree/master/SENSOR/SHT30_TEST

Read the temperature and humidity values measured by the SHT30 sensor

and display them on the screen.

#include <M5Stack.h>
#include <Wire.h>
#include "SHT3X.h"

SHT3X sht30;
float tmp = 0.0;
float hum = 0.0;

void setup() {
 M5.begin();
 M5.Power.begin();
 Wire.begin();
 M5.Lcd.setBrightness(10);
 M5.Lcd.setTextSize(3);
 M5.Lcd.clear(BLACK);
}

void loop() {
 if(sht30.get()==0){
 tmp = sht30.cTemp;
 hum = sht30.humidity;
 }
 Serial.printf("Temperatura: %2.2f*C Humedad: %0.2f%%\r\n", tmp, hum)
;
 M5.Lcd.setCursor(0, 0);
 M5.Lcd.setTextColor(WHITE, BLACK);

 M5.Lcd.printf("Temp: %2.1f \r\nHumi: %2.0f%% \r\n", tmp, hum);

 delay(100);
}

BMP280 Air pressure detection

Description

The BMP280 barometric pressure sensor located in the sensor module

group can collect the barometric data of the current position and

transmit data through the I2C protocol. The I2C address is (0x76)

Hardware connection

Sensor devices that use I2C protocol for communication can be

connected to M5Core's default I2C protocol pins PIN21 (SDA), PIN22

(SCL) when in use

Example

In this case, the library <Adafruit_BMP280.h> is used, you can search

and install it in the library management of Arduino.

Read the atmospheric pressure value measured by the BMP280 sensor and

display it on the screen.

#include <M5Stack.h>
#include <Wire.h>
#include "Adafruit_Sensor.h"
#include <Adafruit_BMP280.h>

/*
 note: need add library Adafruit_BMP280 from library manage
*/

Adafruit_BMP280 bme;
void setup() {
 M5.begin();
 Wire.begin();
 M5.Lcd.setCursor(70, 0, 4);
 M5.Lcd.print("AIR_PRESSURE");

 if (!bme.begin(0x76)){
 Serial.println("Could not find a valid BMP280 sensor, ch
eck wiring!");
 while (1);
 }

}

void loop() {
 float pressure = bme.readPressure();
 M5.Lcd.setCursor(50, 100, 4);
 M5.Lcd.printf("Pressure:%2.0fPa\r\n",pressure);
 delay(100);
}

LED MATRIX

Description

MATRIX is an 8x8 LED matrix. Through programming, it can control any

LED light on the matrix to emit light, and adjust the color,

brightness, and other attributes.

Hardware connection

Connect the control pin to the SIGNAL interface of the matrix and

turn on the independent power switch.

Example

The library <FastLED.h> is used in this case, you can search and

install it in the library management of Arduino.

Drive the LED matrix to perform the water lamp effect

#include <M5Stack.h>
#include <FastLED.h>
/***
 * note:You should first install the Fastled library.
 *
 ***/
#define DATA_PIN 15
#define LED_TYPE WS2811
#define COLOR_ORDER GRB
#define NUM_LEDS 64
CRGB leds[NUM_LEDS];
#define BRIGHTNESS 5
void setup() {
 // put your setup code here, to run once:
 M5.begin();
 M5.Lcd.setCursor(120, 110, 4);
 M5.Lcd.println("MATRIX");

 FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LED
S).setCorrection(TypicalLEDStrip);
 FastLED.setBrightness(BRIGHTNESS);

}
void loop() {
 for(int i = 0; i < 64; i++){
 leds[i] = CRGB::White;
 FastLED.show();
 }
 delay(500);
 // Now turn the LED off, then pause
 for(int i = 0; i < 64; i++){
 leds[i] = CRGB::Black;
 FastLED.show();
 }
 delay(500);

}

RFID

Description

The RFID module integrates an RC522 radio frequency identification

chip and uses the I2C protocol for data transmission. The I2C address

is (0x28)

The working frequency is 13.56MHz. It supports multiple functions

such as card reading, card writing, identification, recording,

encoding, and authorization of RF cards.

Hardware connection

Sensor devices that use I2C protocol for communication can be

connected to M5Core's default I2C protocol pins PIN21 (SDA), PIN22

(SCL).

Example

The following code is only the main program and does not include its

dependent library files such as <MFRC522_I2C.h>. For the complete

code, please visit the Github address below to obtain it.，

https://github.com/m5stack/DEMO-BOARD/tree/master/RFID

Read the ID and software version of the IC card

#include <Wire.h>
#include "MFRC522_I2C.h"
#include <M5Stack.h>

// 0x28 is i2c address on SDA. Check your address with i2cscan
ner if not match.
MFRC522 mfrc522(0x28); // Create MFRC522 instance.

void setup() {

 M5.begin();
 Wire.begin();
 M5.Lcd.setCursor(140, 0, 4);
 M5.Lcd.println("RFID");
 mfrc522.PCD_Init(); // Init MFRC522
 ShowReaderDetails(); // Show details of PCD - MFR
C522 Card Reader details
 Serial.println(F("Scan PICC to see UID, type, and data block
s..."));
 M5.Lcd.setCursor(0,30,2);
 M5.Lcd.println("Scan PICC to see UID, type, and data blocks.
..");
}

void loop() {
 // Look for new cards, and select one if present
 if (!mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadC
ardSerial()) {
 delay(50);
 return;
 }

 // Now a card is selected. The UID and SAK is in mfrc522.uid
.

 // Dump UID
 Serial.print(F("Card UID:"));
 M5.Lcd.println(" ");
 for (byte i = 0; i < mfrc522.uid.size; i++) {
 Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
 Serial.print(mfrc522.uid.uidByte[i], HEX);
 M5.Lcd.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
 M5.Lcd.print(mfrc522.uid.uidByte[i], HEX);
 }
 Serial.println();

}

void ShowReaderDetails() {
 // Get the MFRC522 software version
 byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg);
 Serial.print(F("MFRC522 Software Version: 0x"));
 Serial.print(v, HEX);
 if (v == 0x91)
 Serial.print(F(" = v1.0"));
 else if (v == 0x92)
 Serial.print(F(" = v2.0"));
 else
 Serial.print(F(" (unknown)"));
 Serial.println("");
 // When 0x00 or 0xFF is returned, communication probably fai
led
 if((v == 0x00) || (v == 0xFF)) {
 Serial.println(F("WARNING: Communication failure, is the M
FRC522 properly connected?"));
 }
}

DAC

Description

The development board provides 4 DAC conversion interfaces, which

means that you can program the control channel to output different

voltages. Use I2C protocol for control, and the communication address

is (0x28)

Hardware connection

Sensor devices that use the I2C protocol for communication can be

connected to M5Core's default I2C protocol pins PIN21 (SDA), PIN22

(SCL).

Example

Drive 4 DAC channels to output voltage 1.25V, 2.50V, 3.75V, 5.00V

respectively

#include <M5Stack.h>

#define DAC_ADDR 0x4C

void outVoltage(uint8_t ch,uint16_t v){

 Wire.beginTransmission(DAC_ADDR);
 Wire.write(0x10|(ch<<1));

 Wire.write((v >> 2) & 0xff);
 Wire.write((v << 6) & 0xff);
 Wire.endTransmission();
}

void setup() {
 // put your setup code here, to run once:

 M5.begin();
 Wire.begin(21, 22);
 dacWrite(25, 0);

 M5.Lcd.setCursor(140, 0, 4);
 M5.Lcd.print("DAC");

 outVoltage(0,256); //1.25v
 outVoltage(1,512); //2.50v
 outVoltage(2,768); //3.75v
 outVoltage(3,1023); //5.00v

 M5.Lcd.setCursor(40, 100, 4);
 M5.Lcd.println("ch0:1.25V ch1:2.50V");
 M5.Lcd.setCursor(40, 130, 4);
 M5.Lcd.println("ch2:3.75V ch3:5.00V");
}

void loop() {
 delay(200);
}

ADC

Description

The development board provides 4 ADC conversion interfaces, which

means that you can input some analog signals and convert them into

digital signals for analysis and calculation. Use I2C protocol for

control, and the communication address is (0x48)

Hardware connection

Sensor devices that use the I2C protocol for communication can be

connected to M5Core's default I2C protocol pins PIN21 (SDA), PIN22

(SCL)

Example

Read the analog signals input by the 4 ADC conversion interfaces, and

convert them into digital signals and display them on the screen.

#include <M5Stack.h>
#define ADC_ADDR 0x48
uint16_t InVoltage(uint8_t ch){

 uint8_t data_L = 0;
 uint8_t data_H = 0;
 uint16_t data_adc = 0;

 Wire.beginTransmission(ADC_ADDR);
 Wire.write(0X01);
 Wire.write(0XC0 | (ch << 4));
 Wire.write(0X83);
 Wire.endTransmission();

 Wire.beginTransmission(ADC_ADDR);
 Wire.write(0x00);
 Wire.endTransmission();

 delay(50);

 Wire.requestFrom(ADC_ADDR, 2);
 while(Wire.available()){
 data_H = Wire.read();
 data_L = Wire.read();
 }

 data_adc = (data_H << 8) | data_L;
 return data_adc;
}
void setup() {
 M5.begin();
 Wire.begin();
 dacWrite(25, 0);
 M5.Lcd.setCursor(140, 0, 4);
 M5.Lcd.print("ADC");
}
uint16_t adc_ch0 = 0;
uint16_t adc_ch1 = 0;
uint16_t adc_ch2 = 0;
uint16_t adc_ch3 = 0;
void loop() {
 adc_ch0 = InVoltage(0);
 adc_ch1 = InVoltage(1);
 adc_ch2 = InVoltage(2);
 adc_ch3 = InVoltage(3);
 Serial.printf("ch0:%d ch1:%d ch2:%d ch3:%d\n", adc_ch0, adc
_ch1, adc_ch2,adc_ch3);

 M5.Lcd.setCursor(40, 100, 4);
 M5.Lcd.printf("ch0:%05d ch1:%05d\n", adc_ch0, adc_ch1);
 M5.Lcd.setCursor(40, 130, 4);
 M5.Lcd.printf("ch2:%05d ch3:%05d\n", adc_ch2, adc_ch3);
 delay(500);
}

RS-485

Description

RS-485 is a very common electrical characteristic standard in

industrial control scenarios. The differential signal used in its

communication can effectively resist electronic noise interference.

The RS-485 conversion module on the Demoboard can convert ordinary

TTL level signals into RS485 level signals, realize the conversion of

the protocol, and then control the corresponding type of equipment

Hardware connection

Devices that use serial ports for communication can be connected to

M5Core's default serial pins PIN17 (TXD), PIN16 (RXD),

Example

Receive content from Serial2 and forward to Serial0 (USB), receive

content from Serial0 (USB) and forward to Serial2.
#include <M5Stack.h>

void setup() {

 M5.begin();
 M5.Power.begin();
 Serial.begin(115200);

 // Serial2.begin(unsigned long baud, uint32_t config, int8_t rxPin, i
nt8_t txPin, bool invert)
 Serial2.begin(115200, SERIAL_8N1, 16, 17);
 pinMode(5, OUTPUT);
 digitalWrite(5, 1);
}

void loop() {

 if(Serial.available()) {
 int ch = Serial.read();
 Serial2.write(ch);
 }

 if(Serial2.available()) {
 int ch = Serial2.read();
 Serial.write(ch);
 }
}

RS-232

Description

The RS-232 conversion module can convert TTL level signals to RS232

level signals, realize protocol conversion, and then control

corresponding types of equipment.

Hardware connection

Devices that use serial ports for communication can be connected to

M5Core's default serial pins PIN17 (TXD), PIN16 (RXD).

Example

Receive content from Serial2 and forward to Serial0 (USB), receive

content from Serial0 (USB) and forward to Serial2.

#include <M5Stack.h>

void setup() {

 M5.begin();
 M5.Power.begin();
 Serial.begin(115200);

 // Serial2.begin(unsigned long baud, uint32_t config, int8_t rxPin, i
nt8_t txPin, bool invert)
 Serial2.begin(115200, SERIAL_8N1, 16, 17);
 pinMode(5, OUTPUT);
 digitalWrite(5, 1);
}

void loop() {

 if(Serial.available()) {
 int ch = Serial.read();
 Serial2.write(ch);
 }

 if(Serial2.available()) {
 int ch = Serial2.read();
 Serial.write(ch);
 }
}

APPENDIX

Example Github

https://github.com/m5stack/DEMO-BOARD

https://github.com/m5stack/DEMO-BOARD

Arduino API

https://docs.m5stack.com/#/en/arduino/arduino_home_page

Document & Datasheet

https://docs.m5stack.com/#/en/app/demo-board

	Description
	M5Core
	Hardware and Sensor
	Accessories
	Environment Setup
	Software Install
	Basic Introduction
	Install CP2104 driver
	ESP32 Board
	M5Stack Library
	Hello World

	LCD
	Description
	Text display
	Example

	Button
	Description

	Speaker
	Description
	Example

	Relay
	Description
	Hardware connection
	Example

	Microphone
	Description
	Hardware connection
	Example

	Light Sensor
	Description
	Hardware connection
	Example

	Joystick
	Description
	Hardware connection
	Example

	Step Motor
	Description
	Hardware connection
	Example-1
	Example-2
	Example-3

	DC-Motor
	Description
	Hardware connection
	Example

	Servo
	Description
	Hardware connection
	Example

	Keyboard
	Description
	Hardware connection
	Example

	Encoder
	Description
	Hardware connection
	Example

	SHT30 Temperature and humidity detection
	Description
	Hardware connection
	Example

	BMP280 Air pressure detection
	Description
	Hardware connection
	Example

	LED MATRIX
	Description
	Hardware connection
	Example

	RFID
	Description
	Hardware connection
	Example

	DAC
	Description
	Hardware connection
	Example

	ADC
	Description
	Hardware connection
	Example
	RS-485
	Description
	Hardware connection
	Example

	RS-232
	Description
	Hardware connection
	Example
	Example Github
	Arduino API
	Document & Datasheet

